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Summary

Although modern flight decks now feature so-

pifisticated computer-generated electronic displays,

the display formats themselves are largely electronic
renditions of earlier electromechanical instruments.

New computer graphics capabilities nlake possible

large-screen, integrated pictorial formats to improve

situation awareness, pilot/vehicle interaction, and

aircraft safety with the potential for significant oper-
atiollal benefits. The purpose of this research was to

COulpare the spatial awareness of coinmcrcial airline

pilots on simulated landing approaches using conven-

tional flight displays with their awareness using ad-
vanced pictorial "pathway in the sky" displays. An

extensive sinmlation study was c(inducted in whictl

16 commercial airline pilots repeatedly performed

simulated conlt)lex microwave landing system (MLS)

approaches to closely spaced parallel runways with an
extremely short final segment. Four separate display

configurations were utilized in the sinmlated flights:

a conventional primary flight and navigation display
with raw guidance data and the Traffic Collision and

Avoi(tance System (TCAS) II; the same conventional

instrmnents with an active flight director; a 40 ° field-

of-view (FOV), integrated, pictorial pathway forinat
with TCAS II symbology; and a large-screen 70 °

FOV version of tile pictorial display. Scenarios in-

volving conflicting traffic situation assessinents and

recoveries fl'om flight path offset conditions were used
to assess spatial awareness (own ship position rela-

tive to tile desired flight, route, tile runway, and ()tiler

traffic) with the various display formats. The study

showed that tile integrated pictorial displays consis-
tently provided substantially increased spatial aware-

ness over the conventional electronic flight informa-

tion systems (EFIS) display formats. Tim wider FOV
pictorial display gave equivalent objective results as

the narrower pictorial format and subjectively was

preferred by 14 of tile 16 pilots. The other two pilots

had no preference between tile two pictorial formats.

Introduction

Advances in future airplane cockpits are being

made possible by the rapid progress in display ine-

dia, graphics and pictorial displays, computer tech-

nologies, and hunlan factor methodologies. These

technologies may enable the design of cockpits with

improved crew situation awareness and workload,
safety, and operational efficiency during critical mis-

sion phases. (See ref. 1.) Govermnent and industry

research programs have been established to develop

and apply these technologies. One such progranl in-
volves the use of "synthetic vision" to enable subsonic

transport operations when visibility is restricted and

to provide tile cornerstone technology for more ad-

vanced airplanes, such as a high-speed civil transport

that may have limited forward visibility because of
complex aerodynamic and economic requirements.

Various studies have been undertaken to assess

tile requirements (ref. 2) and to deternline the perfor-

mance (ref. 3) of synthetic vision systems. One stu(ty

(ref. 4) has indicated mnnerous potential benefits for

a future high-speed civil transport in which synthetic
vision is used instead of lowering the nose (hiring

landing, taxiing, and takeoff maneuvers. Thesepo-

tential benefits include improved aerodynamic effi-

ciency, reduced weight, and as much as a 15-percent

reduction in takeoff gross weight through reduced fuel
reserves. Synthetic vision capabilities are defined

herein as the resourceflll merging of imaging sen-

sors (such as fog-cutting sensors), pictorial graphics

displays incorporating geographic and feature data-
t/ases, and advanced navigational aids (such as the

differential Global Positioning System). An ever-

increasing interrelationship between onboard capa-

bilities and airspace inanagement systems is also

generally accepted; therefore, higher levels of crew
situation awareness are required to iml)rove perfor-

mance and safety. (See ref. 5.) Initial investigations

are being conducted on cockpit flight displays to op-
timize the spatial awareness component of situation

awareness. (See refs. 6 8.) This t)aper focuses on

large-screen, integrated pictorial dist)lays as an ap-

proach to synthetic vision technology and on opti-

mizing crew spatial awareness.

To understand situation awareness (SA) in civil

transport operations, a definition is necessary. Regal,

Rogers, and Boucek (ref. 8) state that SA implies

"that the pilot has an integrated understanding of
the factors that will contribute to the safe flying of
the aircraft under normal or non-normal conditions."

As SA increases, "the pilot is increasingly able to

'think ahead of the aircraft,' and . . . do this for a

wider variety of situations." This anticipation entails
"a knowledge of present states, fllture goals, and

the procedures used to get from one to the other."

Regal, Rogers, and Boucek go on to expound that,

for the commercial pilot, another dimension of SA
involves the individual components. One of the inore

important of these components is spatial awareness,

which in this paper involves knowledge of the own

ship position relative to the desired flight route, the

runway, and the other traffic.

The objective of the investigation reported herein

was to evaluate and compare the spatial awareness
component of pilots using displays representative
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Figure 1. Spatial awareness study display formats.

of conventional electronic flight information systems

(EFIS) with two wide-field-of-view pictorial display
concepts. (See fig. 1.) Two formats based on a

Boeing 757 instrumentation layout were used as the

representative conventional EFIS formats. Four al-

ternate display concepts were compared. The EFIS

formats, used as baselines, were identical except that

one incorporated a flight director (with pitch and roll
commands displayed on two perpendicular needles in

the attitude display) and the other forced the pilot to

employ raw deviation error (instrument landing sys-

tem localizer and glideslope indicators) without the
benefit of flight director guidance. Both formats were

included for calibration purposes, as spatial aware-

ness was hypothesized to be quite different for the

two conditions. For example, if the pilot concen-

trated only on centering the flight director needles,

awareness of surrounding events might suffer; if the

pilot er _ployed raw position errors, spacial awareness

might increase.

The two pictorial concepts were identical "path-
way in the sky" formats, varying only in horizon-

tal fielc-of-view (FOV) presentations of 40 ° and 70 °.

PictoriM perspective displays with pathway formats

have been investigated extensively by flight display

researchers (refs. 6, 7, and 9-15) because of the po-
tential benefit of enhanced SA. However, in those

studies, the researchers have not attempted to mea-

sure the. benefits directly. The investigation reported

in this paper was intended to test the hypothesis of

gains ir_ spatial awareness from the pictorial aspects
of the display formats. The investigation was cast

in terms of a single pilot who employs head-down

display:;. Further explanation of the display formats

follows in the section "Display Conditions."



Abbreviations

AGL above ground level

CRT cathode ray tube

DERP design-eye reference point

EFIS electronic flight information system

FMS flight management system

FOV field of view

HUD head-up display

ILS instrument landing system

MLS microwave landing system

ND navigation display

OTW out the window

PFD primary flight display

rms root mean square

SAL standard approach to landing

TCAS Traffic Collision and Aw)idance

System

VISTAS visual imaging simulator for transport

aircraft systems

VSI vertical speed indicator

Sinmlator Description

The Cockpit Technology Branch at Langley Re-
search Center has developed a flexible, large-screen

flight display research system, the VISTAS (visual

imaging sinnflator for transport aircraft systems),
which was utilized in this experiment. The simu-

lator contains the following elements: the simulator

visual system (visual system hardware and graph-

ics generation hardware and software), the aircraft
mathematical model, and the simulator cockpit.

Simulator Visual System

The flexible core of the visual system is embodied

in dual, full-color, high-resolution cathode ray tube

(CRT) projectors that are configured to vary the pro-

jected display aspect ratio by matching the edges and
overlapping the images from each projector. Each

projected image is 15 in. high by 20 in. wide (stan-

dard 3:4 aspect ratio), so a maximum 15- by 40-in.
image can be achieved. This maximum configura-

tion was used to present the four display concepts

for this investigation. The images are generated by

the dual graphics display generators that operated in

synchronization and used the same visual database

to produce a single, large-screen, integrated picture

(combined by the projection system onto the rear-
projection screen that serves as the main instrument

panel for the simulated aircraft). Each generator pro-
vides image resolutions up to 1280 x 1024 pixels in

a 60-Hz progressive scan format (per projector). As

the design-eye reference point (DERP) for transport

cockpit applications is typically about 28 in., the full
40-in-wide display provides a maximum 70 ° FOV.

Aircraft Mathematical Model

A simplified six-degree-of-freedom mathematical

model of a two-engine, medium-weight transport air-

plane was used in this study. The linear transfer

functions and gains were obtained empirically to rep-
resent a fixed-wing generic transport airplane. The

control system represented a system with a basic-rate
command without attitude hold. Turbulence was in-

troduced into the inathcmatical model through the

addition of a disturbance component (a summation

of eight independent sine waves) to the roll rate vari-
able. The level of turbulence was considered moder-

ate by the participating pilots.

Simulator Cockpit

The visual and interactive control elements of this

flight display research tool have been integrated into
a pilot workstation. (See fig. 2.) The pilot work-

station was configured as the pilot side of a generic

transport, fixed-wing airplane in which the seat could

be positioned to place the pilot's eyes at DEI/P. The
workst.atioIl also accominodated the dual-head pro-

jection system and the rear-projection screen that
sinnflated the instrument panel. A two-degree-of-

freedom sidearm hand controller with spring center-

ing provided pitch and roll inputs to the airplane
mathematical modeh A throttle level provided the

throttle inputs; typical self-centering rudder pedals

provided yaw inputs. The display screen (instrument
panel) was titled to provide a 17 ° line of sight (from

horizontal) over the top of the screen, which is typical

of over-the-glareshield views in most airplanes. The
screen display surface was set perpendicular to the

pilot's light of sight. This workstation was then used

to explore the advantages and limitations of large-

screen pictorial, reconfigurable display concepts and
associated interactive techniques.

Display Conditions

This experiment was designed to assess the spatial

awareness component based on integrated pictorial

displays compared with conventional EFIS formats.

The two EFIS displays, utilized as baseline measures,
differed only in that one lacked the flight director
command bars. A basic T instrument arrangement
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Figure 2. VISTAS architecture.

was used with a rendition of a Boeing 757 primary

flight display (PFD) over a navigation display (ND).
(See fig. 3.) The pilot adjusted the ND radius

scale through a switch on the hand controller that

incremented continually through a discrete loop of

the available scales (4 to 50 n.mi. in radius). To
the left of the PFD was a typical airspeed indicator

dial and to the right were typical altitude, vertical

speed, and turn coordinator instruments arranged

vertically in that order. An innovative and un-
conventional power indicator was used in all four

display concepts that integrated engine and ambient

condition information and displayed actual power

(including engine spool up) in percent of thrust.

(See ref. 16.) The power indicator also displayed

power commanded by the throttle setting and power

desired by the flight management system (FMS) for
the programmed approach.

For the integrated pictorial display formats, a

computer-generated out-the-window (OTW) scene
with overlaid head-up display (HUD) symbology was

presented. (See fig. 4.) One pictorial concept was
rendered for a 70 ° FOV and the other for a 40 °

FOV. (See fig. 1.) The OTW portion of the dis-

play consisted of a pathway-based approach, depicted
by green ;4oalposts the widths and heights of which
correspon.]ed to fractions of lateral and vertical in-

strument landing system (ILS) beam errors (+1/2
and -1-1 dot, respectively, with maximum limits of

+300 ft in width and ±175 ft in height applied at

the longer ranges). Also, a tiled roadway consisting

of 20 tiles was presented within the goalposts to aid in

vertical path control and to present a speed cue (the
tiles were 150 ft wide, 30 ft deep, and were spaced

140 ft ap,.rt). When the airplane center of gravity

passed th,, closest tile, a new tile replaced it at the

end of the path such that 20 tiles were always present.
The HUD symbology provided roll and pitch scales

(in degree:_), vertical airspeed and altitude tapes, and

a horizonl al heazling tape. All of the tapes incor-

porated flight management system (FMS) command

"bugs." "[he heading tape also showed ground track

and the airspeed tape also showed ground speed. A
vertical speed indicator was integrated onto the al-

titude talce as a growing or shrinking barber pole

with a digital vertical speed tag. (The tag position
on the altitude scale would denote the altitude at-

tained in 1 rain based on current vertical speed.)
The central HUD symbology consisted of a diamond
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Figure3.Over-and-underarrangementof conventional primary flight and navigation displays with supporting instrumentation.

Figure 4. Seventy-degree FOV, large-screen, integrated, pictorial display concept.

that depicted pitch attitude and winged-V symbols

for instantaneous and predicted flight path vectors.

The display was attitude centered for an attitude

rate command control system, although the pilots

attempted to control the flight path vector. A sec-
ondary smoked-glass (see-through) ND was on the

left side of the pictorial displays and basically du-

plicated the EFIS ND. (Map scale control was pro-
vided in the same manner as that of the EFIS display

conditions.) Thus, horizontal situation display infor-
mation was provided that also depicted traffic within

the OTW-display FOV (delineated by the acute lines

about the own ship centerline) as well as traffic out-
side the FOV.

To evaluate spatial awareness, scenarios (dis-
cussed in the section "Situation Awareness Assess-

ment Tools and Techniques") were constructed that

required the use of the Traffic Collision and Avoid-

ance System (TCAS) II. Therefore, both display

types (all four conditions) incorporated TCAS sym-

bology, but the implementation differed with respect
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Conventional with flight director 70° field-of-view pictorial

(a) TCAS II advisory (yellow circle symbology).

Conventional with flight director 70 ° field-of-view pictorial

(b) TCAS II resolution (red square s) mbology).

Figure 5. TCAS II advisory and resolution displays.

to the TCAS command portion. (See fig. 5.) The

conventional displays incorporated TCAS symbology

on the ND that depicted airplane positions, rela-
tive altitude tags, and vertical direction (if climbing

or descending). The symbology is defined for pur-

poses of this experiment in table I. In actual field
service, the TCAS advisory algorithms have changed

and their implementation has become more sophis-

ticated since the inception of this experiment. For

the conventional displays, the TCAS command to ei-
ther climb or descend was implemented on the verti-

cal speed indicator (VSI) as a color-coded command

bar. (See fig. 5.) The pilot responded by keeping the
VSI needle in the green portion of the indicator (and
out of the red). 1 When this response was achieved,

the pilot was following the TCAS command at an
appropriate vertical rate. Warnings and commands

were strictly visual. Auditory displays (which are

normally a part of TCAS) were considered but were

1The actual display is in color; those colors are not shown
herein.

not employed because they would negate the abil-

ity to measure spatial awareness differences between

display fi,rmats.

For tl_e pictorial displays, TCAS symbology was

implemei_ted in the same manner on the secondary

see-through ND. However, one important augmenta-
tion was made to the pictorial scene: the computer-

generatec image of traffic in the OTW scene was

also enclosed in a TCAS symbol with the appro-

priate color- and shape-coded warnings. No reso-

lution co:nmand (i.e., no vertical speed command)
was presented with the pictorial formats. Full-state-

variable depiction of the OTW traffic was utilized

to avoid ,mdesirable discrete updates, which could

cause undue notice or awareness of traffic. (TCAS
transponders do not presently encode sufficient state

information for full-state-variable depiction.) For all

four display conditions, TCAS was turned off below

500 ft ab:)ve ground level (AGL), although unfilled

blue squares were used to represent other traffic on

the ND displays (an unfilled black square was used

on the OTW portion of the pictorial displays), and
their positions were continually updated.

6



Table I. TCAS II Symbology

Symbol a Definition

O Unfilled bhm diamond

• Solid blue diamond

• Solid yellow circle

• Solid red box

Nonthreatening

Proximity traffic:
Within 1200 ft altitude

6 n.mi.

Nonthreatening

Traffic advisory:
Within 1200 ft altitude

<45 see

Resolution advisory:
Estimated miss

distance <_750 ft

<_30 sec

aThe actual display has these symbols in color; for purposes of

this report, the symbols are in black and white.

The pictorial formats discussed above incorporate
none of the sensor elements associated with synthetic

vision systems for reduced visibility operations with

subsonic airplanes or for the lack of forward visi-

bility with a future high-speed civil transport (in

which synthetic vision is used instead of lowering the
nose). However, the other pictorial elements of syn-

thetic vision are included (pathway representation,

geographic/feature databases, and dependence on

advanced navigational aids). Therefore, this paper
focuses on large-screen, integrated, pictorial displays

as an approach to synthetic vision technology and

the problem of optimizing crew spatial awareness.

Situation Awareness Assessment Tools

and Techniques

The assessment of situation awareness is prob-

ably much more difficult than any attempted defi-
nition. Several techniques have been suggested in

the literature, each with advantages and drawbacks.
The most common method is to measure traditional

pilot/vehicle performance; however, no direct rela-

tionship has been established between performance
and awareness. Therefore, performance measures

should be supplemented by additional techniques.

(See refs. 17-21.) The following additional tech-

niques, compiled from Tenney et al. (ref. 18), were
considered.

Think-Aloud Protocols

Subjects are encouraged to verbalize what they

are thinking and describe what they are doing and

why. This technique is somewhat intrusive and is
utilized only if the subject verbalizes anyway. The

experimenter takes notes and compares the subject's

statements with the subject's actions.

Anomalous Cues and Detection Time

Scenarios are set up that introduce slowly devel-

oping problems that may require some subject in-

teraction. The experimenter then measures the time

elapsed before the subject detects the problem as well
as the time before any corrective action is taken.

Freezing and Probing

This method entails a direct approach in which

the experimenter either interrupts or "freezes" the

task, then takes some form of measurement. Usually,

the experimenter asks relevant questions (in effect,

probing the subject) concerning that task. (See

refs. 19 and 20.) Often questions are asked about
future events (based on what has transpired until

the moment of task freezing), which may provide

greater insight about the subject's awareness of the
situation at that moment. In other words, the better

the SA, the more accurately the subject will predict

the immediate future. In addition, after resuming the

task, the experimenter may take other measurements

indicative of SA (such as time to restore to some

predetermined condition). These methods require
caution because not only has the original task been

corrupted, but the probe results must rely on the

subject's short-term memory.

Static Image Flash and Quiz

Subjects are evaluated for recognition of static
information, scenarios, or conditions when presented

over a short period. The more accurately the subject

perceives or recognizes the situation thus presented,
the better the SA must be with that particular

information display system.

Garden Path and Detection Time

The subject is led to an erroneous conclusion by

slowly developing parallel events. Then the experi-
menter measures the time elapsed before the subject

detects the mistake in interpretation. (The subject

is presented information in such a way that a failure

is correctly realized; however, it is attributed to the

wrong source.) Scenarios for this technique are more
difficult to formulate.

Subjective Methods

The subject completes questionnaires either ver-
bally or by handwritten means and expresses per-

sonal opinions or feelings about the topic.



Spatial Awareness Techniques

Forthisexperiment,severaltechniquesfromthe
literaturewerechosenbasedupontheability to gen-
eratesuitabletransportapproachandlandingoper-
ations. Someof thesetechniquesweresuccessfully
applied;otherswereeitherincorrectlyimplemented
or wereunsuccessfulin providingmeaningfulresults,
usuallybecausereplicateswerelackingor because
statisticalcontrolof experimentalconditionswasin-
sufficient.Reference21addressesthesuccessfuland
unsuccessfulapplicationsof thesetechniquesin the
subjectstudyfromthestandpointofeffectiveSAas-
sessmentmethodologies.As thefocusof this paper
is on thecomparisonof integratedpictorialdisplays
and conventionalEFIS displays, only the success-

ful techniques (those that yielded meaningful results)
are discussed herein.

The traditional lateral and vertical root mean

square errors were recorded directly during the ba-

sic or standard task, which was to follow a stan-

dard approach to landing (SAL). Three SA scenarios,
which induced new tasks, were implemented within

the SAL. Two conflicting traffic scenarios were gen-

erated, one which consisted of crossing traffic sit-

uations that caused TCAS alerts (the Traffic Con-
flict Scenario), and the other which involved runway

bhmders by traffic on landing approach to a parallel

runway (the Runway Blunder Scenario). The third
scenario, the Path Offset Scenario, exposed each pi-

lot to incidents of total display system failure fol-

lowed by sinmlated display recovery. The pilot's task
was, upon display system recovery, to determine the

own ship location relative to the desired flight path,

then to return to the flight path in a timely manner.
Finally, numerous subjective questionnaires were ad-

ministered in which the subject evaluated the dis-

plays by answering relevant questions and by rank-

ing the displays based upon the perception of the

awareness afforded. Unsolicited subject comments
were also recorded throughout the trials. Fhrther

explanations of the individual scenarios, SA eval-

uation techniques, and measures are in the next
section.

Experimental Tasks, Schedule, and

Questionnaires

Sixteen pilots were the subjects of the experi-

ment. All have extensive cockpit experience and

most are with national commercial airlines. (Three

are test pilots with commercial airplane manufactur-
ers.) Four separate experimental tasks were embed-

ded within the spatial awareness assessment efforts.

These tasks were induced by scenarios generated to

exercise the selected SA assessment methods previ-
ously dis(ussed. These scenarios included the Stan-

dard Approach to Landing, the Traffic Conflict Sce-
nario, th( Runway Blunder Scenario, and the Offset

Scenario, all of which were implemented within the
SAL.

Standard Approach to Landing

The Standard Approach to Landing task was
about 27 n.mi. long and involved a simulated com-

plex, mi(rowave landing system (MLS) approach

(fig. 6) to closely spaced, parallel runways. The short

final approach segment was only 1.7 n.mi. long. The

SAL, the neighboring traffic routes (fig. 7), and the
runway configuration (fig. 8) were constructed to pro-

vide a very complex environment of sufficient dura-

tion (aboat 10 rain per flight) for exercising the se-
lected SA measurement tools. The environment was

not inten(ted to replicate the real world but merely to

represent a somewhat realistic, demanding future en-
vironmem. Active traffic was included on all routes;

that is, several airplanes preceded and followed the
own ship on the basic SAL, a constant stream of traf-

fic was on the SAL leading to the parallel runway, and
occasional traffic was on the crossing route.

Figure 6. S mulated MLS standard approach to right runway.

The pilot's task was to fly the SAL manually (in-

cluding th rottle inputs) using the head-down display.

Although recognized that conventional EFIS displays
are not used to fly below decision height altitudes in

real situations (e.g., 200 ft) without an OTW transi-

tion, for this investigation the flight ended at the run-

way threshold without an OTW transition. However,

all awareness scenarios in the investigation were com-
pleted well before a 200-ft altitude was reached. The
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SAL was divided into segments for analysis (fig. 9),

and the performance metrics for the standard task
were the traditional lateral and vertical path track-

ing performances. These metrics are not really spa-
tial awareness measurements, but they are of related

interest as they do provide the assurance that any en-

hanced spatial awareness, as measured by the other
measurement tools, would not be gained at the ex-

pense of degraded tracking performance.

Traffic Conflict Scenario

The basic approach pattern (to the right par-

allel runway) always included other aircraft on an
approach to the left runway. (See figs. 7 and 8.)
For the Traffic Conflict Scenario, which each pilot

Figure 9. Segmentation of SAL route for statistical analysis.

encountered in the data collection session only once

for each display condition, any one of two aircraft.

on an opposing heading from the own ship on seg-
ment 2 of the basic SAL (fig. 9) would inexplicably

(to the subject pilot, but not to the experimenter)
initiate an altitude maneuver intended to lead to a

TCAS advisory situation for the own ship. The per-
formance metrics for this scenario were the detection

time (from the beginning of the approaching traffic
altitude maneuver to the pilot's announced detection

of the resulting threatening situation) and maneuver

time (from the beginning of the approaching traf-
fic altitude maneuver to the initiation of an avoid-

ance maneuver, if initiated, by the own ship pilot).
These metrics reflect the supposition that better spa-
tial awareness would allow earlier detection time, al-

though earlier maneuver time expectations may not
be as implicit. Better awareness of the location and
movement of the other traffic may delay or even elim-
inate the need for an avoidance maneuver.

The data run ended after the Traffic Conflict Sce-

nario without continuing to the threshold. Naturally,

the effect of prior exposure to this type of scenario

can be significant; therefore, the pilots became well
trained for the scenario under all four display condi-

tions. However, the occurrence of this scenario dur-

ing the data collection session was infrequent and
unpredictable.

Runway Blunder Scenario

The basic approach pattern for the Runway Blun-

der Scenario always included another airplane land-

ing on the left runway 30 sec ahead of the own ship

9



(landingon theright parallelrunway).Forthissce-
nario,whicheachpilot encounteredin thedatacol-
lectionsessiononlyoncefor eachdisplaycondition,
the leadaircraftwouldinexplicablyleavethedesig-
natedlandingpatternandcrossin frontof theown
shipflight pathduringfinal approach.(Thisdevia-
tion wouldoccurwhilethe ownship'splannedalti-
tudewas400ft AGL.TheTCASadvisoryandreso-
lution logicwasturnedoffbelow500ft, althoughthe
appropriatedisplaysstill presentedthe traffic with
unfilledbluesquares.)Theperformancemetricsfor
this scenariowerethe detectiontime (fromthe be-
ginningof thecrossingmaneuverby theneighboring
traffic to the pilot's announceddetectionof the re-
sultingthreateningsituation)andthemaneuvertime
(fromthebeginningof thecrossingmaneuverto the
initiation of anavoidancemaneuver,if initiated,by
theownshippilot). Aswith theTrafficConflict Sce-

nario, better spatial awareness was assumed to al-

low earlier detection time, although earlier maneu-

ver time expectations may not be as implicit. Better
awareness of the location and movement of the other

traffic may delay' or even eliminate the need for an
avoidance maneuver.

The effect of prior exposure to this type of sce-

nario can also be significant; therefore, the pilots
became well trained for the scenario under all four

display conditions. As with the Traffic Conflict Sce-

nario, the occurrence of the Runway Blunder Sce-
nario during the data collection session was infre-

quent and unpredictable. Collection of the root mean

square (rms) tracking data ended before initiation of

the Runway Blunder Scenario.

Offset Scenario

The Offset Scenario exposed each of the 16 pi-

lots to 4 incidents of simulated recovery from display
system failure for each display condition. In this sce-

nario, the standard task was interrupted when the

display screen was blanked for a significant period,

after which the original display condition would reap-
pear (simulating recovery from a main display system

failure). Upon reappearance, the position of the own

ship relative to the desired flight path had changed

(the aircraft had been offset to one of two pre-

determined positions relative to the planned flight

path), which thus introduced a new task. The pi-
lot's new task in this scenario was to determine the

location of the own ship relative to the desired flight

path, then to return to the flight path in a timely

manner; the pilot was to respond as though the simu-
lated vehicle were a passenger airliner. Two scenario

conditions were used: placing own ship 1000 ft above

and 750 ft to the left of the flight path in segment 4
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of figure 9 (directly in line with approaching traffic
and in a TCAS resolution situation); the other in-

volved placing the own ship above and to the right
of the flight path (again in segment 4, with no threat-
ening traffic). Two replicates of each scenario condi-

tion (and thus four offset runs per display condition)
were used to increase the statistical power. Because

the airplane heading was not changed for either off-

set position, the pathway was always in view with

the pictorial displays upon display system recovery.

The performance measure for this scenario was

recovery time. A return to flight path was defined
as achievement of an error of less than half a dot in

lateral and vertical tracking and a heading error of
less than 5° . Better spatial awareness was assumed

to allow earlier position determination and result in a

shorter recovery time. For this scenario, the standard

task was interrupted in segment 3 of figure 9, and

the offset placed the airplane in segment 4. The
standard rms tracking performance measures were

not gathered for segments 3 and 4 during an approach
that included the Offset Scenario. Howew_r, tracking

data collection was resumed after path recovery for

the remaining segments of the flight (segments 5 7).

Schedule

Table [I presents a typical 2-day schedule for a

pilot participating in the experiment. After being

briefed on the purpose of the experiment, the details
of each display condition, and the various scenario
conditions, the pilot was allowed about 20 rain to be-

come familiarized with the handling characteristics of
the airplmte model in unstructured flight maneuvers.

Half the pilots used the conventional EFIS without

the flight director display condition for this purpose;

the other half used the 70 ° pictorial display condi-

tion. The pilots were thoroughly trained with the

standard approach task, then were thoroughly ex-

posed to the scenario condition for each display con-
dition. The second day was the data collection ses-

sion. The display conditions were randomly blocked

Fable II. Spatial Awareness Schedule

Day 1 (_10 hr)

Briefing session

Training session:
Characteristics familiarization

Display conditions 1 4

Day 2 (_10 hr with rest periods)
Data collection:

Display conditions 1 4

Questionnaires



TableIlI. DataCollectionSession

Display
condition

aConditiom

Approach
conditions a

R*, 04, Ol, R, Oa, T, R, O2

R, O1, T, R, Oa, O4, R*, 0,2

R, O3, T, R, 02, R*, O4, O1

R, 02, R*, 04, O1, R, 03, T

Questionnaires

Display"
Intrusion evaluation

X X

X X

X X

X X

Display

comparison

R signifies a standard approach.
R* signifies a standard approach with runway bhmder.
T signifies a traffic avoidance maneuver.
On signifies an offset occurrence.

across pilots, and the experimental tasks were ran-
domized within each display condition. Table III

presents an outline of a typical session, the details

of which varied from pilot to pilot.

Questionnaires

As shown in table III, each pilot was asked to

complete two questionnaires at the end of the data-

gathering runs for each display condition. The first
questionnaire probed specific items concerning the

traffic scenarios encountered with that display condi-

tion, and the second dealt with the evaluation of that

display concept in general. After completing all runs
and the individual display concept questionnaires for

each display condition, the pilots completed a final

questionnaire that involved detailed comparisons of

the four display concepts.

Experimental Results and Discussion

The four scenarios were designed as full-factorial,

within-subjects experiments, with pilots, display con-

dition, any scenario conditions, and any replicates as
the factors. Extensive pilot variability is expected;

therefore, pilot variability was isolated from the rest

of the analyses by its inclusion as a main factor in the
experiments. The data collected in the experiments

were analyzed using univariate analyses of variance

for each metric. Newman-Keuls tests (discussed in

ref. 22) of individual means were performed at vari-
ous stages in the analyses. (All such tests were made

at a 1-percent significance level.) The objective re-

sults are presented and discussed for each scenario,

and some subjective results are discussed thereafter.

Traffic Conflict Scenario

The Traffic Conflict Scenario exposed each pilot
to one of two similar traffic avoidance situations for

each display condition. No replication was used;
therefore, the only factors in the experimental design

were the pilots and the display conditions.

Table IV summarizes the analysis results for de-
tection time and maneuver time. Figures 10 and 11

graphically present the results of the Traffic Con-

flict Scenario. All 16 pilots detected each threat-

ening situation, regardless of the display condition.

(See fig. 10.) However, the differences between the
detection times for the EFIS display conditions

and the pictorial display conditions (fig. 11, about

10 see) were statistically significant. Differences

within the display types (EFIS and pictorial) were

not significant.

Table IV. Analysis of Variance Results for Trail%
Conflict Scenario

[From figures 10 and 11]

Degrees

Factor of freedom Significance a

Detection time

Pilots 15 *

Display 3 **
Error 45

Total 63

Maneuver time

Pilots 14

Display 3
Error 2__0_0

Total b37

aSignificance:
-Not significant at levels considered.
*Significant at 5-percent level.

**Significant at 1-percent level.
bMissing 26 cases.
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Figure 10. Traffic Conflict Scenario number of detections and
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Figme I l. Traltic Conflict Scenario mean d('l_'ction times per

display ('(mc¢'ptand cotlditi(m.

ended. In any case, the analysis of variance for the

maneuvel time measure found no statistically signifi-

cant diffe 'ences for any factors of the scenario exper-

iment (arid no figures are presented).

The ilfference from these results is that the pic-

torial displays provided the pilot with better traffic

information than did the EFIS displays. Detection

of the threatening traffic situations occurred earlier
and at greater distances (the 10-sec-earlier detection

time translates into 1 n.mi. of increased separation)

with the pictorial displays; and with the increased

awareness of the situation, the pilots initiated fewer
avoidance maneuvers.

Runway Blunder Scenario

The Runway Blunder Scenario exposed each pilot
to one incident for each display condition in which

another airplane landing on the left parallel runway

30 sec ahead of the own ship inexplicably (to the

subject pilot, but not to the experimenter) crosses
the own ship flight path on final approach to the right

runway. Figure 12 illustrates the Runway Blunder

Scenario and the obvious visual advantages of the
pictorial display formats. No replication was used;

therefore, only pilot factors and display conditions

were analyzed.

Table V summarizes the results of the analyses
for detect on time and nmncuver time. With the

EFIS dist lays, about half the bhmders were (te-

tected. ('Fhe map scale was always on maxinmm
on final at_proach.) With the pictorial displays, the

The altitude maneuver executed by the approach-
ing traffic usually resulted in a TCAS advisory or a

TCAS resolution, with the outcome dependent upon

the current tracking performance of the own ship.

Thirty-eight own ship avoidance maneuvers were ex-

ecuted (fig. 10); in 26 cases the pilot decided not to
execute a maneuver. The maneuvers may have re-

sulted from a TCAS resolution or from an indepen-

dent decision of the own ship pilot. The no-maneuver
decisions may have been made because the situation

was judged not serious. The 23 no-maneuver cases

with the pictorial displays can be attributed to such

judgments, as no TCAS resolution was presented to

the pilots and the requirement for a maneuver was
wholly their decision. Detailed analysis of the three

no-maneuver cases with the conventional displays re-

vealed that TCAS resolutions were presented. How-

ever, in each case the pilot's response to the TCAS
command came so late that the maneuver detection

logic used for scoring was not tripped before the run

Table V. Analysis of Variance Results for Rmlway

Blunder Scenario

Degrees
• aFacto_ of freedom Sigmficanee

Detection time

Pilots 15

Disp[_ 3 **

Error 3_.Q
Tota! b48 -

Maneuver time

Pilots 12 *

Displab 3 **

Error 15 -
Tota %0

aSignifica) ,ce:

-Not siLnificant at levels considered.

*Significant at 5-percent level.

**Significant at 1-percent level.

bMissing 15 cases.

CMissing _3 cases.
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L-93-663
(a)ConventionalEFISwithflightdirectordisplayformat

with incurringtraffic(unfilledbluediamondin color

version) near beginning of incursion maneuver.

L-93-664

(b) Conventional EFIS with flight director display format
with incurring traffic (unfilled blue diamond in color

version) near end of incursion maneuver.

L-93-661 L-93-660

(c) Portion of pictorial display format with incurring traffic (d) Portion of pictorial display format with incurring traffic

(airplane silhouette enclosed by black square) near begin- (airplane silhouette enclosed by black square) near end of

ning of incursion maneuver, incursion maneuver.

Figure 12. Runway Blunder Scenario depicting parallel traffic incursions.

16 pilots detected all threatening situations. (See

fig. 13.) The differences between the mean detection
times for the EFIS display conditions and the picto-

rial display conditions (fig. 14, about 8 sec) were sta-

tistically significant. The difference within the EFIS

display types (3.3 sec sooner for the flight director
condition versus without the flight director) also was

significant, whereas the difference between the picto-
rial conditions (0.7 sec sooner for the 40 ° condition)
was not.

Of the 64 runway blunder incidents, 15 went un-

detected under the EFIS display conditions. (See

fig. 13.) Within the 49 detected incidents, the pilots

chose to initiate a go-round maneuver in 31 cases.

Analysis of the maneuver time measure for those
31 cases revealed significant differences between most

paired means comparisons. (See fig. 15.) The ma-
neuver time difference between the EFIS displays

was statistically significant, with the flight director
mean 4.6 sec earlier than the EFIS without the flight

13



16

14

12

10

_o 8
E_

6

4

2

o

[] Maneuvered
• Detected

Conventional Flight director 40 ° pictorial 70 ° pictorial

Display

Figure 13. Runway Blunder Scenario number of detections

and subsequent maneuvers.
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Figure 14. Runway Bhmder Scenario mean detection times

per display concept and condition.
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Figure 15. Runway Blunder Scenario mean times to maneuver

since detection.

director mean. The pictorial display mean of 40 ° was

a significant 3.4 sec earlier than the flight director
mean. The difference between the 40 ° and the 70 °

pictorial display means (2.0 sec earlier with the 70 °

pictorial display) was not statistically significant.
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The inference from these results is that the pic-

torial displays provided the pilot with better traffic
awareness near the runway than did the EFIS dis-

plays. Fifteen of the 32 runway blunder incidences

went undel;ected with the EFIS displays; detection in
the remaining 17 incidents came later than with the

pictorial displays. Also, with the increased awareness

of the runway situation, the pilots initiated fewer go-
round maneuvers when they used the pictorial dis-

plays. Within the EFIS display conditions, the detec-
tion time and the maneuver time means were lower

for the EFIS flight director condition. Without the

flight director, the pilot is probably intent on inter-

preting the raw error information and controlling to

minimize glide slope and localizer deviations during
final approach. Less time would thus be available to

monitor the neighboring traffic than when just fol-
lowing the flight director commands.

Offset Scenario

The Offset Scenario exposed each pilot to four

incidents of simulated recovery from display system
failure for each display condition. The pilot's task

in this scenario was, upon display system recovery,

to determine the location of the own ship relative to

the desired flight path, then to return to the flight
path in a timely manner. Two scenario conditions

were used, one placing the own ship in a TCAS
resolution situation and the other in an unthreatened

position. Two replicates of each scenario condition

were used; and therefore, the factors analyzed were

pilots, dist,lays, scenario condition, and replicates.

Table _I summarizes the results of the analyses
for recovery time. (A return to path was defined
as achieve:nent of an error of less than half a dot

in lateral and vertical tracking and a heading error
of less than 5°.) Statistically significant differences

were founc between the displays and the interaction

between t)le displays and the scenario conditions.

Figure 16 !)resents the results for the display factor
and figure 17 graphically presents the results for the

second-order interaction between the displays and
the scenario conditions. In figure 16, more time is re-

quired to iecover when using the conventional EFIS

displays w thout the flight director. With the flight

director, the recovery time was 14.6 sec quicker than

without tt:e flight director, and the performances
with the pi :'torial displays were at least 10.2 sec faster

than the flight director results; these differences were
statisticall:" significant. The difference between the

pictorial conditions (2.5 sec faster for the 40 ° condi-
tion) was Itot significant.

Figure 17 shows that with the two conventional

EFIS display conditions, the pilots took longer to



TableVI. AnalysisofVarianceResultsforOffsetScenario

Degreesof Significanceaof
Factor freedom recoverytime

Pilots
Displays
Conditions
Replicates
Pilots× Displays
Pilots× Conditions
Displays× Conditions
Pilots x Displays

× Condition

Error

Total

aSignificance:

15

3
1

1

45
15

3

45

127
255

-Not significant at levels considered.
*Significant at 5-percent level.

**Significant at 1-percent level.
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Figure 16. Offset Scenario mean times to recover to intended

flight path per display concept and condition.
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Figure 17. Offset Scenario second-order interaction between

displays and scenario conditions; mean times to recover

to intended flight path per display concept and condition.

recover from the left offset condition (the TCAS traf-

fic resolution case) than from the right offset condi-
tion. For the conventional EFIS without the flight di-

rector, the difference was a significant 13 sec, whereas

the significant difference for the flight director case
was about 6 sec. The differences for the two pictorial

cases were not statistically significant.

The inference from these results is that the pilots

were able to determine the own ship location rela-

tive to the desired flight path and return to the flight

path more quickly with the pictorial displays. The
flight director recovery was faster than the conven-

tional display without the flight director, probably

because interpreting the raw error information was

more time-consuming than just following the flight
director commands. The difference in recovery time

between the pictorial displays and the flight director

display was attributed to better spatial awareness,

but it might also involve more aggressive manual in-
tercepts of the flight path with the pictorial displays

versus the intercept logic within the flight director.

Perhaps a better spatial awareness metric for this

scenario would have been maneuver time (the time
elapsed before maneuvering began, as was used in

the Runway Blunder scenario).

The statistically meaningful results from the sce-
nario conditions within the Offset Scenario (the

second-order interaction term) occurred with the
conventional EFIS displays. When the display sys-

tem recovered from the simulated display failure

to reveal a TCAS resolution situation (the left off-

set condition), the pilots probably responded to the
TCAS vertical resolution before attempting to de-

termine the own ship location relative to the desired

flight path and returning to the flight path. There-

fore, recovery took longer for the left offset condition
than for the right. With the pictorial displays, the

sense of urgency to move is much higher for the left

offset condition, and the direction of desired move-

ment is readily determined from the visual presenta-

tion. (The maneuvering response to a TCAS resolu-
tion under the pictorial display conditions was left to

the pilot's discretion, as opposed to the EFIS TCAS

resolution of vertical movement.) Therefore, recovery
was initiated more quickly for the left offset condition

than for the right (offset condition with no threaten-

ing traffic), although the 3- to 3.5-see differences were
not statistically significant.

Subjective Results

Table III enumerates the nine questionnaires

administered to each pilot. The summary of those

subjective results (which is sufficient for this paper)

revealed a dramatic improvement in all aspects of
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(b) Ease of maintaining spatial awareness.

Figure 18. Rating results from pilots for two subjective

categories.

spatial awareness when both pictorial formats were

used and, in particular, when the large-screen 70 °

version was involved. Figure 18 presents rating re-

sults for two subjective categories as typical exam-
ples. The pilots were asked to rate, the ease of be-

coming disoriented and, in an opposite connotation

16

(as a sanity check, the same question), the ease

of maintaining spatial awareness when using each

display c,mfiguration (without comparison to the

other display configurations). In both instances, the
two pictorial formats dramatically improved spatial

awareness and, in particular, when the large-screen
70 ° version was involved.

Anotbw subjective assessment of each display

configuration (without comparison to the other dis-

play configurations) used the Modified Cooper-

Harper scale (modified to extend its utility beyond
handling quality evaluations; ref. 2a) that is shown in

figure 19. Figure 20 presents the average, maximum,

and minimum ratings (not plus or minus the stan-
dard deviations) for all experiment scenarios. The

two pictorial formats distinctly improved the mod-

ified ratiig (in both mean rating and spread), al-
though differences between the two fields of view were
hard to az_sess within the confinements of lower end
of the scale.

Figure 21 presents the results of comparative rank

ordering by the pilots for several categories on a scale

of 1 (tile most desirable display,) to 10 (the least desir-
able displ;ly). The average, maximum, and minimum

rankings ]_resented (not. plus or minus the standard

deviations,). The categories are used to corot)are the
display concepts over all the scenarios. The pilots

ranked db;play effectiveness for success in monitoring
traffic, fol reduction of their workload, and for their

reactions regarding the entire experiment. Again,

be_se(t on tile subjective comments, the pictorial for-
mats sub:_tantially improved all aspects of spatial

awareness (in both average ranking and spread). In

particular the large-screen 70 ° version was preferred
by 14 of tm 16 pilots; two pilots had no preference.

In ado ition to the formal questionnaire results,

other sub}ective comments were obtained. Particu-

larly notable are the following:

"Like flying on a beautiful VFR [visual flight
rules] day "

"Provi des immediate assessment of the
situation .... "

"Abilfiy to fly complex approaches is greatly

improved."

"Easier to detect traffic incursions and runway
blunders.'

"Displ:_y of pictorial world is natural and easy to

interpret."

Objective Tracking Performance Results

In addition to the SA measurement techniques,

standard rms tracking data were collected and
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deficiencies;

system
redesign is
mandatory

Operator Rating II demand levelDifficulty level

Operator mental effort is 111]
Very easy, minimal and desired performance

highly desirable is easily attainable

Easy, Operator mental effort is low and 112]desirable desired performance is attainable

Fair, mild Acceptable operator mental effort r,_l
difficulty is required to attain adequate ik,_j

system performance

Minor but Moderately high operator mental
annoying effort is required to attain r4_

difficulty adequate system performance •

Moderately High operator mental effort r5_objectionable is required to attain
difficulty adequate system performance • •

Very objectionable Maximum operator mental effort • •
but tolerable is required to attain 6

difficulty adequate system performance • •

Maximum operator mental F •
Major difficulty effort is required to bring 7

errors to moderate level • •

Maximum operator mental • •

Major difficulty effort is required to avoid 8
large or numerous errors • •

Intense operator mental effort is • •
Major difficulty required to accomplish task, but 9

frequent or numerous errors persist • •

Impossible Instructed task cannot be I1_101
accomplished reliably

Figure 19. Modified Cooper-Harper scale for mental workload a.ssessment.
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Figure 20. Modified Cooper-Harper mean rating results over all experiment scenarios.
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Figure 21. Comparative rank ordering by pilots ::or three categories.

analyzed. The standard or basic SAL was divided

into segments for this purpose (fig. 9), with tile fol-
lowing designations:

Segment Descript ion

Turning entry

Straight descent

Descending turn

Transition to straight and level, deceleration

Level turn

3 ° descent, deceleration, and turn final

Short final approach

The analysis for segment 1 (entry to the SAL from
the off-path initial conditions) was not meaningful in

terms of spatial awareness or display format results

and is not presented. Table VII presents a summary
of the analyses of variance results for the rms of the

vertical aI,d lateral tracking errors for the other seg-

ments. St_ttistically significant differences were found
between pilots, displays, and the interaction of those

two factors. Pilot response varied greatly (as ex-
pected); t mrefore, pilot variability was isolated from

the rest oI the analyses by its inclusion as a main fac-

tor in the analyses. The pilot-by-display interaction

typically indicated that the pilots reacted differently

to the dislflay effect; that is, one pilot might exhibit

a very larvae difference during two display conditions,
whereas another pilot would exhibit a smaller dif-

ference. The differences were typically in the same

direction, with only the magnitudes varying among

pilots.

Figure 22 presents a comparison of the display
condition rms lateral error means from the 16 pilots

for each segment. Not surprisingly, the lateral track-

ing perfor:nance error was significantly larger for ev-
ery segment of the SAL in which the conventional

EFIS was used without the flight director display.
Differences between the conventional EFIS with the
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Table VII. Significance of Variance Results for Tracking
Performance Measures

(a) Summary of analyses for segments 2, 5, and 6

Factor

Pilots

Displays

Replicates

Pilots x Displays

Error

Total

Degrees

of freedoni

15

3

6

45

378

447

Sigmflcance of rms

performance for

Vertical Lateral

(b) Smnmary of analyses for segments 3 and 4

Degrees

of free([olll

Significance" of rms

performance for

Factor Vertical Lateral

Segment 3

Pilots

Displays

Replicates

Pilots x Displays

Error

Total

15

3

2

45

126

191

Segment 4

Pilots

Displays

Replicates

Pilots x Displays

Error

Total

15

3

2

45

126

191

(c) Summary of analysis for segment 7

Factor

Pilots

Displays

Replicates

Pilots x Displays

Error

Total

a Significance:

Degrees

of freedom

15

3

5

45

315

383

Significance a of rms

performance for--

Vertical Lateral

-Not significant at levels considered.

*Significant at 5-percent level.

**Significant at 1-percent level.

flight director and the two pictorial display condi-

tions were also significant (flight director error was

larger), whereas differences between the 40 ° and 70 °

display conditions were not. Differences in perfor-

mance between segments for a t)articular display (:on-

dition can t)e attrilmted to the type of segment. (Seg-

ments 3, 5, and 6 included turns and segments 2, 4,

and 7 were straightaways.)

Figure 23 presents a comparisoll of the display

condition rms vertical error means from the 16 pilots

for each segment. Not surprisingly, the vertical

tracking performance error was significantly larger

for every segment for the conventional EFIS without

the flight director display. Differences among the

conventional EFIS with the flight director and the

two pictorial display conditions were also significant.,

but only for segments 2, 3, and 6 (flight director

error was larger). Differences between the 40 ° and

the 70 ° display conditions were not significant for

any segment. Differences in t)erfornmnce t)etween

segments for a particular display condition can be

attributed to the type of segment (segments 2, 3, 6,

an(t 7 included descents, wtlerea_s segm(,nts 4 an(t 5

were level).

The lateral and vertical tracking performances

with the pictorial display conditions were at least

as good as or better than thc performances with

the EFIS flight director display, and the flight direc-

tor performances were much better than the EFIS

without the flight director. Although no conclusions

may be drawn from these facts about increased or

decreased spatial awareness, they do provide the as-

surance that the increased spatial awareness from the

pictorial displays, as measured by the other nmasure-

ment tools, did not degrade tracking performance.

Inferences From Results

Conclusive inferences can be drawn from the ob-

jective and subjective results. Meaningful compar-

isons are possible between the two EFIS display for-

mats, between the two pictorial display formats, and

between the conventional EFIS displays and the pic-

torial displays.

EFIS Comparisons

In all cases in which objective or subjective com-

parisons were possible, EFIS displays with the flight

director achieved either equivalent or better per-

formance. The earlier supposition had been that

concentration only on centering the flight direc-

tor needles might reduce the pilot's awareness of

surrounding events, whereas using raw position er-

rors might increase spatial awareness. However, that
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suppositionwasprovedinvalidhere.Perhapsthekey
wordin that suppositionwasthewordonly. Better

spatial awareness appears to be gained because the

flight director imposes a lower path-tracking work-

load on the pilot, thereby allowing time to scan other

sources of information besides the flight director nee-

dles. Use of raw data error in the EFIS without the

flight director requires that almost constant attention

be devoted to the path-tracking t.ask.

Pictorial Comparisons

The objective data revealed equivalent perfor-

mance for the 70 ° pictorial display compared with the

40 ° FOV. Tile subjective data, however, revealed a

strong preference for the wider FOV, particularly for

awareness during turning entry and traffic situations.

EFIS and Pictorial Comparisons

Both the objective and subjective data demon-

strated that the integrated pictorial displays in-

creased spatial awareness ow_r the conventional EFIS

display formats.

Concluding Remarks

An extensive sinmlation study was performed

to determine and compare the spatial awareness of

commercial airline pilots on simulated landing ap-

proaches using conventional flight displays with their

awareness using advanced pictorial "pathway in the

sky" displays. Various situation awareness measure-

ment techniques were incorporated within the sce-

narios. Conflicting trattic situation assessments and

flight path recaptures after recovery from simulated

display" system failure were ereate.d to assess spa-

tial awareness using different display formats. Both

objective and subjective techniques were employed.

The spatial awareness scenarios yielded results that

were consistent across and within the objective and

subjective measures.

The objective data analyses revealed that bet-

ter spatial awareness performance was achieved when

the flight director was included in the electronic flight

information systems (EFIS) display. However, the in-

tegrated pictorial displays consistently provided sub-

stantially increased spatial awareness compared with

either of the conventional EFIS display formats. Ob-

jective data results for the wider field-of-view (FOV)

pictorial display were equivalent to those obtained

with the narrower pictorial format.

The subjective results, which were also summa-

rized herein, indicated a strong preference for the

flight director within the EFIS displays. However,

the subjective study revealed that all aspects of spa-

tial awareness were dramatically improved by the two

pictorial formats and, in particular, by the large-

screen version with a 70 ° FOV.

Therefore, integrated pictorial displays show sig-

nificant promise for improving situation awareness.

These types of formats also can be the basis for

an effective synthetic vision system, one which

can solve restricted visibility problems associated

with advanced subsonic and future high-speed civil

transports.

NASA Langley Research Center

Hampton, VA 23681-0001

July 1, 1994
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